Electronics

Dimensions in mm

HF-Performer II TL-D

Product description

Slim, lightweight high-frequency electronic ballast for TL-D fluorescent lamps, based on Ell technology.

Features and benefits

- Programmed start: warm start circuit preheating the lamp electrodes; this enables the lamps to be switched on and off without reducing useful life
- 50% longer lamp life than with conventional ballasts
- Up to 25% reduction in energy consumption at constant luminous flux compared with conventional gear
- Smart power: constant light independent of mains voltage fluctuations
- Unit is protected against excessive mains voltages and incorrect connections
- Automatic stop circuit is activated within five seconds in case of lamp failure (safety stop); once the lamp has been replaced, the ballast resets automatically
- Equipped with connectors suitable for automatic wiring machines.

Applications

Typical areas of application include:

- Department stores, shops, supermarkets
- Suitable for use with infrared remote control systems
- Airports, railway stations
- Outdoor lighting
- Office buildings, for example, insurance companies, banks, government ministries
- Hospitals
- Hotels
- Industrial premises
- Emergency installations with VDE 0108 with re-ignition $<0.5 \mathrm{~s}$.

Philips quality

This assures optimum quality regarding:

- System supplier As manufacturers of lamps and electronic control gear, Philips ensures that, from the earliest development stage, optimum lamp/ballast performance is maintained
- European standards Philips HF electronic ballast complies with all relevant international rules and regulations.

Compliances and approvals

- RFI $<30 \mathrm{MHz}$

EN 55015

- RFI > 30 MHz
- Harmonics
- Immunity
- Safety
- Performance
- Vibration \& bump tests
- Quality standard
- Environmental standard
- Approval marks

EN 55022 B*
EN 61000-3-2
EN 61547
EN 61347-2-3
EN 60929
IEC 68-2-6 Fc
IEC 68-2-29 Eb
ISO 9000-2000
ISO 14001
ENEC-VDE-EMV

- CE marking
- Temperature declared thermally protected

IEC61347-1
*HF-P 270 TL-D EII
EN 55022A

Product ID	A1	A2	B1	C1	D1
$118 / 136 / 158 / 170$	280	265	30	28	4.2
$218 / 236 / 258 / 270$	280	265	30	28	4.2
$3 / 418$	280	265	39	28	4.2

Technical data: (all typical values at Vmains $=230 \mathrm{~V}$)

Lamp	$\begin{aligned} & \text { Qty. of } \\ & \text { lamps } \end{aligned}$	Ballast	System Power W	Lamp Power w	Ballast Losses W	NOMINAL Lamp Lumen Im	EEI
TL-D 18 W	1	HF-P 118TL-D Ell	19	16.5	2.5	1350	A2
TL-D 18 W	2	HF-P 218TL-D Ell	37	16.5	3.5	1350	A2
TL-D 18 W	3	HF-P 3/418TL-D EII	54	16.5	4.5	1350	A2
TL-D 18 W	4	HF-P 3/418TL-D EII	70	16.0	5.5	1350	A2
TL-D 36 W	1	HF-P 136TL-D Ell	37	34.0	3.0	3350	A2
TL-D 36 W	2	HF-P 236 TL-D EII	70	33.0	4.0	3350	A2
TL-D 58 W	1	HF-P 158 TL-D Ell	56	51.5	4.5	5200	A2
TL-D 58 W	2	HF-P 258 TL-D Ell	107	50.5	6.0	5200	A2
TL-D 70 W	1	HF-P 170 TL-D Ell	68	63.0	5.0	6200	A2
TL-D 70 W	2	HF-P 270 TL-D EII	129	61.0	8.0	6200	A2

Technical data for installation

Mains operation

Rated mains voltage	$220-240 \mathrm{~V}$	
With tolerances for performance:	$+6 \%-8$	$202-254 \mathrm{~V}$
With tolerances for safety	$+/-10 \%$	$198-264 \mathrm{~V}$
Mains frequency		$50 / 60 \mathrm{~Hz}$
Operation frequency (typical)	$>42 \mathrm{kHz}$	
	$(45 \mathrm{kHz})$	
Power factor	>0.96	

DC voltage operation during emergency back-up
Required battery voltage for guaranteed ignition 198-254V
Required battery voltage for burning lamps
Nominal light output is obtained at the DC voltage of 220-240 V
Notes:

1. For a continuous DC application, an external fuse should be used in the luminaire.
2. Continuous low DC voltages ($<198 \mathrm{~V}$) can influence the lifetime of the ballast

Earth leakage current	$<0,5 \mathrm{~mA}$ per ballast
Ignition time	$<0.5 \mathrm{~s}$

Constant light operation In case of mains voltage fluctuations within 202-254 V, the luminous flux changes by a maximum of $\pm 2 \%$

Overvoltage protection

Dual fixture; master-slave operation

Cable capacity

Automatic restart after lamp replacement or voltage dip

Insulation resistance test:

Note: Ensure that the neutral is reconnected again after abovementioned test is carried out and before the installation is put into operation.

Mains current at 230V

Ballast	Qty. of lamps	Input current
HF-P 118TL-D EII	1	0.09
HF-P 218TL-D EII	2	0.19
HF-P 3/418TL-D EII	3	0.25
HF-P 3/418TL-D EII	4	0.33
HF-P 136TL-D EII	1	0.16
HF-P 236TL-D EII	2	0.31
HF-P 158TL-D EII	1	0.24
HF-P 258TL-D EII	2	0.48
HF-P 170TL-D EII	1	0.30
HF-P 270TL-D EII	2	0.59

Electronics

HF-Performer II TL-D

Inrush current
$\left.\begin{array}{|l|r|r|}\hline \text { Ballast } & \begin{array}{r}\text { Max. quantity of } \\ \text { ballast per }\end{array} & \begin{array}{r}\text { Inrush current } \\ \text { value time at }\end{array} \\ & \begin{array}{r}\text { Miniature Circuit } \\ \text { Breaker } \\ \text { typical mains }\end{array} \\ & \begin{array}{rl}\text { Type B16 A }\end{array} & \text { Type C16A }\end{array}\right]$

Conversion table for max. quantities of ballasts on other types of Miniature Circuit Breaker

MCB type	Relative number of ballasts	
B	16 A	100% (see table above)
B	10 A	63%
C	10 A	104%
L, I	16 A	108%
L, I	10 A	65%
G, U, II	16 A	212%
G, U, II	10 A	127%
K, III	16 A	254%
K, III	10 A	154%

wiring diagrams

Technical data for design and mounting HF ballasts in

 fixturesTemperatures
Temperature range to ignite lamp $\quad-25^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
with ignition aid
Max. Tcase $=75^{\circ} \mathrm{C}$
Lifetime of a ballast depends on the temperature of the ballast. This means there is a relation between the Tc point on the ballast and its lifetime. The HF-Performer II ballast for TL-D applications has a specified lifetime of 50.000 hrs , with a maximum of 10% failures guaranteed, at a measured Tcase of $75^{\circ} \mathrm{C}$.

Hum and noise level
inaudible

Permitted humidity is tested according to EN61347-1 par. 11.
Note that no moisture or condensation may enter the ballast.

The ballasts that are thermally protected use a protective method of another type providing equivalent thermal protection.

Connector types:

Wago universal connector. Suitable for both automatic wiring (ALF and ADS) and manual wiring

Wire lengths:

For 1 L circuits keep wires to terminals 3 and 4 short For 2 L circuits keep wires to terminals 1, 2, 6 and 7 short For 3 \& 4 L circuits keep wires to terminals 1, 2, 9 and 10 short

Wiring diagram 2 lamps:

Connector 4 can be connected, but this is not necessary

Wire cross-section:

Lower connector
On the mains side: $0.5-1.0 \mathrm{~mm}^{2}$
On the lamp side: $0.5-1.0 \mathrm{~mm}^{2}$

Upper connector

On the mains side: $0.5 \mathrm{~mm}^{2}$ solid wire; $0.75 \mathrm{~mm}^{2}$ stranded wire On the lamp side: $0.5 \mathrm{~mm}^{2}$ solid wire; $0.75 \mathrm{~mm}^{2}$ stranded wire

Strip length: 8-9 mm

Notes

1. Data is based on a main supply with an impedance of $400 \mathrm{~m} \Omega$ (equal to 15 m cable of $2,5 \mathrm{~mm}$ and another 20 m to te middle of the power distribution), under worst case conditions. With an impedance of $800 \mathrm{~m} \boldsymbol{\Omega}$ the number of ballasts can be increased by 10\%.
2. Measurements will be verified in real installations; therefore data are subject to change.
3. In some cases the maximum number of ballasts is not determined by the MCB but by the maximum electrical load of the lighting installation.
4. Note that the maximum number of ballasts is given when these are all switched on at het same moment, i.e. by a wall switch.
5. Measurements were carried out on single-pole MCB's. For multi-pole MCB's it is advisable to reduce the number of ballasts by 20%.
6. The maximum number of ballasts wich can be connected to one Residual Current Detector of 30 mA is 30 .

Ordering and packing data

Ballast	1 Piece		Bulk packing					EOC
	EAN code	Weight kg	Qty.	Dimensions $l \times w \times h$ cm	Volume m^{3}	Weight gross kg	EAN code	
HF-P 118TL-D Ell	8711500934086	0.22	12	$32.8 \times 20.6 \times 8.7$	0.006	2.9	8711500934093	93408630
HF-P 218TL-D Ell	8711500934130	0.25	12	$32.8 \times 20.6 \times 8.7$	0.006	3.2	8711500934154	93413030
HF-P 3/418TL-DEII	8711500931641	0.29	10	$32.8 \times 22.1 \times 8.7$	0.006	3.1	8711500931658	93164130
HF-P 136 TL-D EII	8711500931467	0.23	12	$32.8 \times 20.6 \times 8.7$	0.006	3.0	8711500931474	93146730
HF-P 236 TL-D EII	8711500931504	0.23	12	$32.8 \times 20.6 \times 8.7$	0.006	3.0	8711500931511	93150430
HF-P 158 TL-D Ell	8711500931481	0.25	12	$32.8 \times 20.6 \times 8.7$	0.006	3.2	8711500931498	93148130
HF-P 258 TL-D Ell	8711500931528	0.25	12	$32.8 \times 20.6 \times 8.7$	0.006	3.3	8711500931535	93152830
HF-P 170 TL-D EII	8711500934116	0.22	12	$32.8 \times 20.6 \times 8.7$	0.006	2.9	8711500934123	93411630
HF-P 270TL-D EII	8711500058638	0.25	12	$32.8 \times 20.6 \times 8.7$	0.006	3.2	8711500058645	05863830

